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AV4EV	 -	Open-Source	 Modular	 Autonomous Electric Vehicle	 Platform 

1.	Introduction 

The	 AV4EV	 project aims to	 create	 an accessible, open-source, one-third 	scale 	electric 	vehicle 	(go-
kart)	 platform designed for	 autonomous	 driving	 research and development. This	 platform merges	 
the 	capabilities of full-scale	 vehicles	 with	 the	 Blexibility	 and lower 	cost	of 	smaller 	platforms.	The 
objective	 is	 to	 address	 the	 challenges	 of developing autonomous	 vehicle	 (AV) systems	 and	 to	 make	 
AV research	 more	 accessible	 to	 universities	 and	 research	 institutions. This	 project offers	 a modular,
open-source	 design	 and supports	 multiple driving	 modes, including	 manual, autonomous, and
teleoperated. 

2.	Problem	Statement 

Research	 on	 autonomous	 vehicles	 faces	 signiBicant barriers	 due	 to	 the	 cost and	 complexity	 of full-
sized	 vehicle	 platforms. Many	 existing	 AV platforms	 are	 expensive	 and	 require	 large, skilled	 teams	 
to 	develop 	and 	test	in 	specialized facilities.	On 	the 	other end, scaled-down	 RC	 cars, while	 affordable,
lack 	the 	capabilities 	needed for 	advanced 	research.	AV4EV 	addresses this 	gap 	by offering 	an 
affordable, modular, open-source	 platform for	 AV research, enabling	 universities	 to	 develop	 and	 
test	algorithms 	without the 	limitations of 	reduced-size	 platforms. 

3.	Approach 

The	 AV4EV	 platform combines mechatronics, sensors, and	 autonomous driving software	 in a 
modular design. It uses a Blexible sensing suite and open-source	 autonomous	 driving	 software	 that 
includes perception, localization, planning, and control algorithms. This	 allows	 researchers	 to	 
develop	 and	 test new	 algorithms	 while	 avoiding the	 prohibitive	 costs	 of full-scale	 vehicle	 platforms. 

The	 go-kart platform has	 been	 validated in	 competitive settings, including	 the 2023 Autonomous	
Karting	 Series	 Purdue	 Grand	 Prix, where	 it demonstrated	 its	 autonomous	 driving	 capabilities. 



	

	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	
 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	

 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	

4.	Methodology	 

The	 AV4EV	 platform consists of the	 following components: 

1. Mechatronics: The	 platform’s mechatronic system includes a power distribution system, a 
main control	 system, and subsystems for steering, braking, and throttle control, all	 of which 
communicate	 via	 a	 controller	 area	 network	 (CAN). 

2. Sensing: The	 platform uses a variety of sensors, including a LiDAR, an OAK-D	 camera, a 
Global Navigation Satellite	 System (GNSS), and	 an Inertial Measurement Unit (IMU). These	 
provide	 real-time 	data for 	perception 	and 	localization. 

3. Software: The	 autonomous driving software	 is built on Robot Operating System (ROS2) and	 
includes algorithms for raceline optimization and adaptive pure pursuit	 control. 

5.	Findings	 



 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	

 	 	 	 	 	 	 	
	 	 	 	 	

	 	 	 	

	

	 	 	 	 	 	
	 	 	 	

	 	 	 	
	 	

	

 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	
 	 	 	 	 	 	 	 	

	

 	 	 	 	 	
 	 	 	 	 	 	
 	 	 	 	

 	 	
 	 	 	

1. System Performance: The	 AV4EV	 platform successfully demonstrated	 its capabilities in
autonomous	 driving	 scenarios, including	 perception, localization, and control. The system 
was tested in both indoor and outdoor environments, with results showing high 
performance	 in	 terms	 of	 speed, accuracy, and reliability. 

2. Accessibility: By lowering the cost of AV research platforms, AV4EV has made it easier for 
universities	 and	 research	 groups	 to	 develop	 and	 test new algorithms	 in	 a	 real-world 
environment. The system’s modularity also allows for customization and reusability across 
different applications. 

3. Education Impact: The	 platform’s design enables educational institutions to	 provide	
hands-on	 experience	 to	 students, helping them understand	 the	 challenges	 of developing 
autonomous	 systems	 while working	 with real hardware. 

6.	Conclusions	 

The	 AV4EV	 project successfully addresses the	 need	 for a Blexible	 and	 affordable	 autonomous 
driving platform that can	 bridge	 the	 gap	 between	 small-scale	 and	 full-scale	 vehicles. The	 system’s	
open-source	 nature	 and	 modular	 design	 make	 it ideal for	 research	 and	 educational purposes, 
providing	 a	 scalable	 solution	 for	 AV development. 

7.	Recommendations 

1. Expand Deployment: Develop more use cases for the platform, including logistics, 
warehouse management, and urban transport, to further demonstrate its versatility. 

2. Increase Community Engagement: Encourage	 more	 universities	 and	 research	 institutions	
to adopt the AV4EV platform and contribute to its development through the open-source	 
community. 

3. Enhance	 Modularity: Continue to	 develop additional modules for specialized	 use cases, 
such	 as	 autonomous	 delivery	 robots	 or	 urban	 mobility	 solutions. 

8.	Project	Outputs	and	Documentation	 

1. PDFs for any	 resulting publications: https://ieeexplore.ieee.org/document/10588611 
2. Dataset URL(s) and Descriptive Metadata: http://av4ev.org 
3. ORCIDs for Project Investigators:

1. Zhijie	 Qiao: https://orcid.org/0000-0001-9197-2849 
2. Rahul Mangharam: https://orcid.org/0000-0003-XXXX-XXXX 

https://orcid.org/0000-0003-XXXX-XXXX
https://orcid.org/0000-0001-9197-2849
http://av4ev.org
https://ieeexplore.ieee.org/document/10588611
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16. Abstract 

Over the past decade, self-driving capability for all variants of on-street vehicles have promised safer and more 
efficient transportation. This remains “work in progress” with large unfilled gaps in addressing user-acceptance, safety, 
ethics, regulation, technology and the business model. Our goal is to develop the Open-source Autonomous Vehicle 
(AV) software for Open-standard Electric Vehicle (EV) platforms, ie. AV4EV paradigm, to help realize safe, reliable, 
and efficient autonomy for off-street use cases. We focus on developing the AV4EV Autonomy Essentials Kit (AV4EV-
Kit) for known controlled application domains: logistics (in-warehouse mobile robots), material handling (autonomous 
forklifts) and airside cargo (autonomous ground support equipment). The AV4EV business model addresses these 
many smaller domains through simplification and modularity. The EV ‘skateboard’ chassis is orders of magnitude 
simpler than on-street vehicles (~20 moving parts compared to nearly 2,000 in contemporary vehicle architectures) -
supporting standardization of interfaces for autonomous driving. Modularity allows AV4EV to address autonomous 
vehicle market sizes of 50K-250K vehicles/year for each use case by enabling component re-use and efficient 
customizability to meet specific segment needs. If successful, the AV4EV Kit will create a new business category for 
Autonomy-as-a-Service with plug-n-play hardware and software for rapid prototyping and deployment. Autonomous 
machines have a serviceable market of $2.9B with a 15.5% growth rate. 

The AV4EV Autonomy Essentials Kit enables logistics customers to kickstart their journey of autonomous machines 
for safe and efficient movement of people and goods, even if their companies have little prior autonomous system 
development experience. Using the AV4EV-Kit, customers can rapidly prototype EV platforms into autonomous 
machines in 10 days for brownfield deployments. 

The AV4EV Autonomy Essentials Kit is dedicated to lowering the entry barrier of autonomous driving development 
and deployment. AV4EV-Kit consists of (1) a plug-in-play hardware platform with sensors and compute, (2) an 
autonomy software stack to achieve essential autonomous driving functions of perception, sensor fusion, mapping, 
localization, path planning, obstacle avoidance, traffic light recognition and safe control; and (3) a new Software 
Defined Vehicle approach for autonomous machine software development and testing in the cloud to lower cost of 
mixed-criticality software and over-the-air upgrades to enhance safety across the vehicle lifecycle and customize for 
different deployment scenarios. The AV4EV-Kit conforms to the open-source Autoware autonomous vehicle software 
standard to interface with the EV’s drive-by-wire system for users to easily integrate navigation functions with vehicle 
control. The AV4EV-Kit incorporates energy-efficient machine learning-based perception, planning and control 
algorithms developed by the PI’s and Co-PI’s labs and will be tested by commercialization partners on a variety of EV 
platforms. 
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Abstract—When academic researchers develop and validate 
autonomous driving algorithms, there is a challenge in balancing 
high-performance capabilities with the cost and complexity of the 
vehicle platform. Much of today’s research on autonomous vehi-

cles (AV) is limited to experimentation on expensive commercial 
vehicles that require large skilled teams to retrofit the vehicles 
and test them in dedicated facilities. On the other hand, 1/10th-

1/16th scaled-down vehicle platforms are more affordable but 
have limited similitude in performance and drivability. To address 
this issue, we present the design of a one-third-scale autonomous 
electric go-kart platform with open-source mechatronics design

along with fully functional autonomous driving software. The 
platform’s multi-modal driving system is capable of manual, 
autonomous, and teleoperation driving modes. It also features 
a flexible sensing suite for the algorithm deployment across 
perception, localization, planning, and control. This development 
serves as a bridge between full-scale vehicles and reduced-scale 
cars while accelerating cost-effective algorithmic advancements. 
Our experimental results demonstrate the AV4EV platform’s 
capabilities and ease of use for developing new AV algorithms. All 
materials are available at AV4EV.org to stimulate collaborative 
efforts within the AV and electric vehicle (EV) communities. 

Index Terms—Autonomous vehicle, electrical vehicle, open-

source design. 

I. INTRODUCTION 

The increasing interest in self-driving cars has ushered in 
a new area of study in recent years: autonomous racing. 
This involves the development of software and hardware 
for high-performance racing vehicles intended to function 
autonomously at unprecedented levels, including high speeds, 
substantial accelerations, minimal response times, and within 
unpredictable, dynamic, and competitive settings [1]. However, 
a significant hurdle remains the unavailability of full-sized ve-
hicles and the accessibility of smaller-scaled RC cars. For full-
sized platforms that encompass independent driving capacities 
such as the Dallara AV21 from Indy Autonomous Challenge 
[2], testing the limits of safety and performance is costly 
and hazardous, and also outside the reach of most academic 

*These authors contributed equally to this work. 

departments and research groups. For smaller-scaled RC cars 
such as F1TENTH [3], the limited capability of sensing and 
computing constrains the complexity of the algorithms and the 
level of research conducted. 

To address this issue, we created AV4EV, an accessible, 
open-source reference model for a one-third-scale autonomous 
electric racing platform. This platform merges the capabilities 
of full-sized vehicles with the compactness and adaptability of 
its smaller size. AV4EV offers open-source designs for mecha-
tronics, sensing, and autonomous driving software, aiming to 
provide a standardized solution for modular autonomous and 
electric vehicles. 

Our go-kart won the championship at the 2023 Autonomous 
Karting Series Purdue Grand Prix, where it competed against 
several other US national teams [4]. This autonomous go-kart 
solution can easily be adopted by universities and research 
institutes to promote the safe and effective development and 
verification of AV. 

This work makes the following contributions: 

1) We introduced an accessible modular electric vehicle 
platform with multi-driving modes (manual, autonomous, 
and teleoperated), bridging the gap between full-scale 
vehicles and RC cars. The estimated cost of constructing 
one go-kart, including all mechatronic systems, stands 
at approximately 12,500 USD. It is expected that with 
scaled production, the cost will decrease substantially. 

2) We developed a flexible sensing suite and demonstrative 
software solutions to handle autonomous driving capabil-
ities validated through experiments. The estimated cost is 
around 11,000 USD, while the figure can vary depending 
on user-specific requirements and customization. 

3) We provided comprehensive open-source resources to 
guide building and testing the one-third-scale electric go-
kart with detailed tutorials, GitHub repositories for hard-
ware design and software stacks, demonstration videos, 
a bill of materials [5]–[7]. 

https://AV4EV.org
mailto:rahulm@seas.upenn.edu


Fig. 1: Go-kart platform overview with Steer-by-Wire System (SBWS) including its hand wheel (HW) and road wheel (RW) 
components, Throttle-by-Wire System (TBWS), and Electronic Braking System (EBS). The sensors and computing units 
mounted on the double-deck rear shelf are enumerated from top to bottom as follows: (1) Ouster LiDAR, (2) OAK-D camera, 
(3) Onboard laptop, (4) Main Control System (MCS), (5) Sepentrio GNSS, and (6) IMU, concealed from the main view 
perspective, is positioned on the lower deck. 

II. MECHATRONICS 

The go-kart mechatronic system is designed as a modular 
system, consisting of several subsystems that are responsible 
for different vehicle execution tasks. There are five subsys-
tems which integrated with the base go-kart chassis in a 
non-intrusive way: Power Distribution System (PDS), Main 
Control System (MCS), Throttle-by-Wire System (TBWS), 
Steer-by-Wire-System (SBWS), and Electronic Braking Sys-
tem (EBS) (Fig. 1). All subsystems except the PDS utilize 
an STM32 Nucleo development board on a standalone PCB 
as the electronic control unit (ECU). Communication among 
these modular systems is achieved through the controller 
area network (CAN), aligning with modern vehicle design 
standards for efficient information exchange. 

A. Power Distribution System (PDS) 

The autonomous go-kart is powered by six Nermak Lithium 
LiFePO4 deep cycle batteries, each possessing a voltage of 
12V and a capacity of 50Ah. These batteries are installed on 
both sides of the go-kart and interconnected via wiring across 
the chassis. Four of them are linked in a series, yielding a 
net voltage of 48V, which powers the TBWS motor. A step-
down converter is utilized to convert the voltage from 48V to 
12V, which in turn provides power to the SBWS and EBS 
motor. The remaining two batteries, also interconnected in 
series, produce a net voltage of 24V. This voltage is then fed 
through several converters to obtain different desired voltages 
to power up the sensing (Fig. 2a) and control (Fig. 2b) systems. 

B. Main Control System (MCS) 

The MCS handles all driving requests from the top-level 
supervisory controller and dispatches commands (throttle, 

steering, brake) on the CAN bus [8]. It serves as an interface 
between the go-kart mechatronic system and the end user. 
Three different operation modes are supported: manual, re-
mote, and autonomous. In manual mode, input is read from the 
steering wheel, throttle, and brake pedals of a driver, just like 
in a conventional vehicle. In remote mode, the operator uses a 
Spektrum DX6 2.4GHz radio to send driving commands to the 
MCS. In autonomous mode, the command is transmitted from 
a high-level computing unit, such as a laptop or an onboard 
computer, through USB-to-TTL communication. After receiv-
ing the desired driving commands, the MCS sends these on the 
CAN bus to be received by the subsystems. Meanwhile, each 
subsystem measures its state with sensors and sends feedback 
on the CAN bus. This feedback is gathered by the MCS and 
shared with the operator. 

C. Throttle-by-Wire System (TBWS) 

The TBWS includes the electronic controller unit (ECU) 
and VESC 75/300 motor driver to control the go-kart’s main 
drive motor. The brushless DC motor (ME1717 from Moten-
ergy) transmits the motion to the go-kart rear axle of through 
a chain and drives the wheels in the longitudinal direction. 
The ECU receives the desired speed from the MCS via the 
CAN bus, measures the current speed through an encoder, 
and outputs the desired throttle signal to the VESC controller, 
which then powers up the motor. Additionally, a remote kill 
switch is added independent of the ECU that allows the user 
to kill power, thus ensuring safety in the worst-case scenario. 

D. Steer-by-Wire System (SBWS) 

The SBWS eliminates the mechanical steering shaft be-
tween the hand wheel (HW) and road wheel (RW), allowing 



(a) Sensing (b) Motor 

Fig. 2: Sensing (left) and motor (right) power system with connections and devices. 

each part to be governed by its motor, sensor, and ECU [9]. 
This design reduces weight, space, and cost with the modu-
lar structure, while improving the flexibility and availability 
of autonomous driving functions [10]. Our HW component 
utilizes a brushed DC motor to coaxially drive the HW. The 
RW component employs a NEO1650 Brushless DC motor to 
propel the two front wheels via steering tie rods as linkages. 

E. Electronic Braking System 

The original go-kart design translates movement from the 
driver pressing the brake pedal to the master cylinder and 
reservoir via the push rod, generating hydraulic braking pres-
sure without the need for additional servo motors. To achieve 
autonomous braking without human input, a linear actuator is 
mounted at the end of the push rod to create a linear movement 
simulating the pedal-pressing action. This non-intrusive design 
allows the safety operator (if present) to press the brake pedal 
regardless of the linear actuator state. Finally, a pressure sensor 
is installed onto the braking hydraulic system to collect data 
for effective feedback control. 

III. SENSING 

The sensing system is a fundamental module for research 
and development for perception and localization. Our design 
employs a flexible sensor setup that can be customized and 
reconfigured to suit different objectives and priorities. 

To start up, an Ouster OS1 LiDAR is positioned at the 
highest point on the rear end of the go-kart to leverage its 
max 200-meter range and 360-degree field of view. The OAK-
D camera, placed below the LiDAR, has the capabilities of 
high-resolution image capturing, depth measuring, and long-
range object tracking. These features work seamlessly with the 
LiDAR point cloud for object fusion and post-processing. 

Moreover, the go-kart is equipped with a Global Navigation 
Satellite System (GNSS) and an Inertial Measurement Unit 
(IMU). For GNSS, we utilized the Sepentrio Mosaic-H carrier 
board with two Multiband antennas (IP66) from ArduSimple 
mounted on both rear sides of the go-kart. We also subscribed 
to Swift Navigation’s real-time kinematic positioning (RTK) 
service, enabling our GNSS to achieve centimeter-level posi-
tion accuracy. In situations where GNSS signals are disrupted 
due to severe weather or signal obstructions, an IMU is needed 
for localization filtering. Thus, we placed a BNO055 9-DOF 
IMU on the go-kart’s centerline of mass to provide accurate 
accelerometer, gyroscope, and magnetometer information. 

All sensors transmit data to an onboard laptop, which then 
executes algorithms and transmits drive commands to the 
MCS. We used the MSI Pulse GL66 15.6” Gaming Laptop, 
integrated with an Intel Core i7-12700H, an RTX3070 GPU, 
16GB of internal RAM, and a storage capacity of 512GB. The 
laptop also contains three USB 3.0 ports and one Ethernet port 
to support high-speed data transmission with the sensors. 

IV. SOFTWARE 

We designed an autonomous racing framework using the 
Robot Operating System (ROS2) for our go-kart platform 
with the free tooling of Python and C++. This framework 
incorporates two primary algorithms: a GNSS-based pure 
pursuit method for pre-mapped racing and a camera-based 
follow-the-gap (FTG) algorithm [11] for reactive racing. In 
the framework outlined in this paper, LiDAR was not used 
due to its complexity. Nevertheless, the LiDAR data is readily 
available and will be integrated into future research. The soft-
ware pipeline within the holistic autonomous driving workflow 
is illustrated in Fig. 3. 
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Fig. 3: Software pipeline for go-kart autonomous driving capabilities: GNSS-based adaptive pure pursuit (red), camera-based 
follow-the-gap (green), go-kart mechatronics execution (blue). 

A. Localization 

The position measurements from the GNSS are presented in 
latitude and longitude. To convert these geographical coordi-
nates into a more interpretable format within a local frame, we 
utilized the equirectangular projection method as in equations 
(1): 

x = r · cos(lat) · lon, y = r · lat, (1) 

where r symbolizes the mean radius of the Earth, which 
is 6371 kilometers, lat stands for latitude (radians), and 
lon denotes longitude (radians). A reference point is first 
established, and all subsequent coordinates are defined with 
respect to this reference point, treating it as the origin [12]. 
While this approach has the potential to introduce distortion, 
in our case, the impact is negligible due to the small size of 
the testing field. 

As previously mentioned, there are instances where the 
GNSS signal may experience interruptions. To guarantee 
timely and accurate localization information, we implemented 
an Extended Kalman Filter (EKF) that integrates IMU data. 
Evolving dynamically over time t, the velocity motion model 
Xt adopted for the go-kart is consisting of the position xt, yt 
and orientation ωt; the input to the system is linear velocity 
vt and angular velocity εt; and the identity covariance matrix 
Pt that is initialized at timestamp zero: 

TXt = [xt, yt, ωt] , (2) 

ut = [vt, εt], (3) 

ϑ2 
x ϑxy ϑxω 

Pt = ϑyx ϑ2 ϑyω . (4)y 
ϑ2ϑωx ϑωy ω 

At timestamp t, the system is linearized around the current 
state, and the prediction step is executed as follows: 

xt + vt!t · cos(ωt) 
Xt+1|t = yt + vt!t · sin(ωt) . (5) 

ωt +!tεt 

For each state in the system, we calculated the partial deriva-
tives with respect to the other states to obtain the Jacobian 

matrix: 
1 0  →!t · v · sin(ω) 

J = 0 1  !t · v · cos(ω) . (6) 
0 0  1  

The prediction update of the covariance matrix is as follows: 

Pt+1|t = JPJT +R, (7) 

where the dynamic noise R is approximated as a constant 
diagonal matrix of 0.1, with units in meters and radians. 

For the observation step, we extracted position data x and 
y from the GNSS and orientation data ω from the IMU, and 
denote them with subscripts: 

TXobs = [xobs, yobs, ωobs] . (8) 

Given that the observation directly corresponds to the state, 
the Jacobian is equivalent to the identity matrix. By combining 
the variance readings from the sensors that are organized as a 
diagonal matrix M , we could calculate the Kalman gain K: 

ϑ2 0 0xobs 
ϑ2M = 0 yobs 0 , (9) 

0 0 ϑ2 
ωobs 

→1K = Pt+1|tI
T (IPt+1|tI

T +M) , (10) 

Finalize the update step to complete localization: 

Xt+1|t+1 = Xt+1|t +K(Xt+1|t → Xobs), (11) 

Pt+1|t+1 = (I → KI)Pt+1|t. (12) 

B. Raceline Optimization 

In pre-mapped racing scenarios, a reference racing line is 
generally acquired in advance and subsequently tracked by 
the controller. The raceline is represented by a sequence of 
waypoints consisting of the target position x, y, velocity v, etc. 
While manually piloting the go-kart, waypoints are gathered 
at consistent temporal or spatial intervals. It may not account 
for vehicle dynamics, resulting in a non-smooth trajectory. 

Therefore, we integrated a min-curvature raceline optimiza-
tion algorithm as proposed in [13]. First, we calibrated the 
physical properties of the go-kart such as mass, width, maxi-
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Fig. 4: Waypoints collection and raceline optimization at 
Purdue Grand Prix racing track, which spans a distance of 
434 meters. 

mum turning radius, maximum acceleration, etc., assuming a 
track of uniform width, and then utilized manually collected 
waypoints to depict the centerline of the track. The raceline 
points can be parameterized as: 

The lookahead point comprises both the desired velocity 
and position. Intuitively, for the vehicle to trace the arc 
from its current position to the lookahead point, the steering 
angle should be proportional to the arc curvature ς. Utilizing 
geometric relationships, we deduced the radius r of the arc 
and subsequently determine ς: 

1 2|y|
ς = = , (17)

r L2 

where |y| is the lateral distance from the vehicle to the 
lookahead point. To actuate the steering angle and enhance 
stability, we utilized a Proportional-Derivative (PD) controller 
that modulates the steering angle φt according to ς: 

dςtφt = Kpςt +Kd , (18)
dt 

where ς is treated as the cross-track error term [15], reflecting 
the lateral deviation. In practice, Kp = 2.0, Kd = 1.0. 

D. Boundary Detection 

We devised a vision-based algorithm for detecting race track 
boundaries for the reactive component of the AKS compe-
tition, where pre-mapping was not permitted. The algorithm 
relies on grass detection surrounding the race track, employing 
classical computer vision techniques with OpenCV. 

To identify grass regions, the input RGB camera image is 
blurred using a Gaussian filter to eliminate unwanted noise. Its (13) ϖ = 

T= [xi, yi] is the center line point, ϖni is the unit grayscale, which grants higher intensities to green pixels than 

ϖri pi + ϱiϖni, blue and green channels are then extracted and normalized in 
ϖ where pi 

length normal vector, and ai encodes the track boundaries. 
The raceline is then defined through third-order spline inter-
polations of the points ri in x and y coordinates. Followed 
the formulation in [13], we minimized the discrete squared 
curvature ςi of the splines along the raceline: 

N 

minimize 
[ε1 ···εN ] 

ς2 
i (t) 

i=1 

(14) 

subject to ϱi ↑ [ϱi,min, ϱi,max] ↓1 ↔ i ↔ N. (15) 

Subsequently, we generated the velocity profile considering 
the longitudinal and lateral acceleration limits of the car at 
various velocities. As depicted in Fig. 4, the optimized raceline 
shows reduced curvature, thereby enhancing smoothness and 
eliminating overlapping waypoints. 

C. Adaptive Pure Pursuit Controller 

To track the generated raceline, we implemented an adaptive 
pure-pursuit controller based on the geometric bicycle model 
[14]. Initially, a lookahead point is chosen on the raceline, 
situated at a fixed lookahead distance L from the vehicle. L 
is adaptively interpolated between a minimum Lmin = 2m 
and a maximum Lmax = 5m, proportionally scaled to the 
vehicle’s current velocity v and regulated by the maximum 
velocity vmax = 5m/s: 

v 
L = Lmin + (Lmax → Lmin). (16)

vmax 

to pixels of other colors. Green pixels G(x, y) are identified by 
the green g and the blue b channel with a threshold ↼ , where 
↼ can be affected by many factors such as the environment 
and the lighting condition: 

G(x, y) =  
1, 

0, 

if 0.6 · g → b ↗ ↼ 

if 0.6 · g → b <  ↼  
. (19) 

The resultant binary image G represents a mask for grass 
regions. This mask is then processed with open and then close 
morphology operations to remove small noise. 

Next, we conducted a bird’s-eye view (BEV) projection that 
converts an image from a front view to a top-down view. A 
transformation matrix is determined offline by mapping four 
points in the image to their respective BEV coordinates using 
OpenCV’s getPerspectiveTransform function (Fig 5). 

The final step is to convert the grass BEV into a 2D depth 
format. The depth data is denoted by a vector s ↑ Rd , where 
each si is a distance measurement from the go-kart to an 
object. Correspondingly, a vector a ↑ Rd captures the angles 
associated with si. The range of detection is [→↽/2, ↽/2], 
indicating a 180-degree field of view ahead of the vehicle 

↑sampled at 0.5 resolution. The zero angle is aligned with 
the vehicle’s heading while angles are measured counter-
clockwise. 

E. Follow-the-Gap 

After acquiring depth data from boundary detection, we 
employed the FTG method to identify the largest gap that 



Fig. 5: Grass boundary detection. (a) Raw camera input. (b) 
Filtered grass mask. (c) The BEV of the grass mask. Green 
lines indicate the angles for searching grass distances. (d) The 
converted depth data is plotted as green dots and overlaid onto 
the BEV image of the camera input. 

meets the required safety distance from the vehicle and nav-
igate toward it. First, we defined a gap g as a continuous 
subsequence [si, sj ] where i and j are the starting and ending 
indices respectively, such that: 

↓k ↑ [i, j], sk ↗ ⇀, (20) 

where ⇀ = 2.5m is a safety distance threshold that determines 
the minimum allowable distance for a gap. We chose the 
largest gap as the optimal one, which starts at index iopt and 
ends at index jopt. Then, we chose the midpoint of the optimal 
gap as the goal at index kmid to reduce unnecessary oscillation: 

iopt + joptkmid = . (21)
2 

Since the zero angle is parallel to the vehicle’s heading, we 
calculated the steering angle φ from the angle vector a: 

φ . (22)= akmid 

Thereafter, the desired velocity v is interpolated between 
a minimum vmin = 2m/s and a maximum vmax = 5m/s, 
proportionally scaled to the vehicle’s current steering angle 
φ, and regulated by the maximum allowable steering angle 
φmax = 1.0rad: 

φ 
v = vmin + (vmax → vmin). (23)

φmax 

V. CONCLUSION 

In this paper, we introduced an open-source design for an 
electric go-kart platform enabling advanced research and de-
velopment in autonomous driving systems. The design’s mod-
ular mechatronic systems seamlessly support different driv-
ing modes. Additionally, we have implemented an adaptable 
sensor stack to execute tasks such as perception, localization, 
planning, and control. Our experimentation has showcased 
the go-kart’s versatility, demonstrating its proficiency in the 
autonomous mode while running the pure pursuit and follow-
the-gap algorithms. This innovative design effectively bridges 
the gap between reduced-scale cars and full-scale vehicles, 
enabling both widespread accessibility with high performance. 

It consequently provides immense value to universities and 
research institutions, fostering collaboration towards the open 
development and validation of autonomous vehicles. 

Future work will focus on the continuous improvement of 
the mechatronic, sensing, and software systems. We plan to 
leverage the platform’s different driving modes and explore 
human-machine interactions, such as the imitation learning 
algorithm [16], which involves dynamic cooperative control 
between the driver and the vehicle. 
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